82 research outputs found

    Does homeownership partly explain low participation in supplementary pension schemes?

    Get PDF
    We used nine waves of the Bank of Italy’s Survey on Household income and Wealth (1995- 2012) to investigate a possible trade-off between homeownership and individual participation in a supplementary pension scheme. Italy lends itself to this type of investigation because the Italian public pension system has been heavily reformed in the period, providing in principle incentives for participation, and the homeownership rate is very high. The impact of homeownership is captured in two ways: by a dummy for being homeowner and by an index defined as the share of housing wealth over total wealth. Our results show that indeed, after controlling for a vast array of socio-economic characteristics and allowing for unobserved individual heterogeneity, both measures of homeownership are negatively associated with participation in supplementary pension schemes and that such an effect does not disappear even after the 2007 reform

    Are patinas of the Mediterranean monuments really related to the rock substrate?

    Get PDF
    Patinas of different mineralogies and colours occur on most monuments of the Mediterranean area. The origin(s) of the latter have often been related to previous painting and/or protective treatment(s). Microbial and biogeochemical pathways of formation, however, have as well been proposed and discussed. Paintings and photographs make it clear that coatings of changing colours have covered famous monuments in the past 200 years. Also the presence of microbiota has been recorded already 150 years ago. The work recorded here was done on several buildings in the Mediterranean area. A wide variety of localities and rock substrates and the patinas on them have been studied. Among the rocks were marbles, limestones calcarenites, granites and sandstones. In all cases studied patinas, their thickness and colour as well as their mineralogical composition were related to the exposure type. The patinas usually are multi-layered, the individual layers characterized by different crystal size, texture, mineralogy, and colour. Orange to grey layers are characterized by calcium carbonates and oxalates with some phosphates admixed, while the dark grey to black layers are rather characterized by gypsum with some trapped air-borne particles in cases. The petrology and mineralogy of the patinas is practically identical in all cases. Many of the patinas are inhabited by a variated microflora causing pitting and exfoliation in cases of the patina. Sometimes the pitting is only seen in the patina, and it reaches also the bedrock. A relationship between patina formation, preservation, destruction and climatic changes over the past 200 years is derived from these findings

    Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi

    Get PDF
    Fungal strains isolated from rocks and lichens collected in the Antarctic ice-free area of the Victoria Land, one of the coldest and driest habitats on earth, were found in two phylogenetically isolated positions within the subclass Dothideomycetidae. They are here reported as new genera and species, Recurvomyces mirabilis gen. nov., sp. nov. and Elasticomyces elasticus gen. nov., sp. nov. The nearest neighbours within the clades were other rock-inhabiting fungi from dry environments, either cold or hot. Plant-associated Mycosphaerella-like species, known as invaders of leathery leaves in semi-arid climates, are also phylogenetically related with the new taxa. The clusters are also related to the halophilic species Hortaea werneckii, as well as to acidophilic fungi. One of the latter, able to grow at pH 0, is Scytalidium acidophilum, which is ascribed here to the newly validated genus Acidomyces. The ecological implications of this finding are discussed

    Antifungal Testing and High-Throughput Screening of Compound Library against Geomyces destructans, the Etiologic Agent of Geomycosis (WNS) in Bats

    Get PDF
    Bats in the northeastern U.S. are affected by geomycosis caused by the fungus Geomyces destructans (Gd). This infection is commonly referred to as White Nose Syndrome (WNS). Over a million hibernating bats have died since the fungus was first discovered in 2006 in a cave near Albany, New York. A population viability analysis conducted on little brown bats (Myotis lucifugus), one of six bat species infected with Gd, suggests regional extinction of this species within 20 years. The fungus Gd is a psychrophile (“cold loving”), but nothing is known about how it thrives at low temperatures and what pathogenic attributes allow it to infect bats. This study aimed to determine if currently available antifungal drugs and biocides are effective against Gd. We tested five Gd strains for their susceptibility to antifungal drugs and high-throughput screened (HTS) one representative strain with SpectrumPlus compound library containing 1,920 compounds. The results indicated that Gd is susceptible to a number of antifungal drugs at concentrations similar to the susceptibility range of human pathogenic fungi. Strains of Gd were susceptible to amphotericin B, fluconazole, itraconazole, ketoconazole and voriconazole. In contrast, very high MICs (minimum inhibitory concentrations) of flucytosine and echinocandins were needed for growth inhibition, which were suggestive of fungal resistance to these drugs. Of the1,920 compounds in the library, a few caused 50% - to greater than 90% inhibition of Gd growth. A number of azole antifungals, a fungicide, and some biocides caused prominent growth inhibition. Our results could provide a theoretical basis for future strategies aimed at the rehabilitation of most affected bat species and for decontamination of Gd in the cave environment

    Redefinition of Aureobasidium pullulans and its varieties

    Get PDF
    Using media with low water activity, a large numbers of aureobasidium-like black yeasts were isolated from glacial and subglacial ice of three polythermal glaciers from the coastal Arctic environment of Kongsfjorden (Svalbard, Spitsbergen), as well as from adjacent sea water, sea ice and glacial meltwaters. To characterise the genetic variability of Aureobasidium pullulans strains originating from the Arctic and strains originating pan-globally, a multilocus molecular analysis was performed, through rDNA (internal transcribed spacers, partial 28 S rDNA), and partial introns and exons of genes encoding β-tubulin (TUB), translation elongation factor (EF1α) and elongase (ELO). Two globally ubiquitous varieties were distinguished: var. pullulans, occurring particularly in slightly osmotic substrates and in the phyllosphere; and var. melanogenum, mainly isolated from watery habitats. Both varieties were commonly isolated from the sampled Arctic habitats. However, some aureobasidium-like strains from subglacial ice from three different glaciers in Kongsfjorden (Svalbard, Spitsbergen), appeared to represent a new variety of A. pullulans. A strain from dolomitic marble in Namibia was found to belong to yet another variety. No molecular support has as yet been found for the previously described var. aubasidani. A partial elongase-encoding gene was successfully used as a phylogenetic marker at the (infra-)specific level

    Molecular Tools for Monitoring the Ecological Sustainability of a Stone Bio-Consolidation Treatment at the Royal Chapel, Granada

    Get PDF
    Background: Biomineralization processes have recently been applied in situ to protect and consolidate decayed ornamental stone of the Royal Chapel in Granada (Spain). While this promising method has demonstrated its efficacy regarding strengthening of the stone, little is known about its ecological sustainability.Methodology/Principal Findings: Here, we report molecular monitoring of the stone-autochthonous microbiota before and at 5, 12 and 30 months after the bio-consolidation treatment (medium/long-term monitoring), employing the well-known molecular strategy of DGGE analyses. Before the bio-consolidation treatment, the bacterial diversity showed the exclusive dominance of Actinobacteria (100%), which decreased in the community (44.2%) after 5 months, and Gamma-proteobacteria (30.24%) and Chloroflexi (25.56%) appeared. After 12 months, Gamma-proteobacteria vanished from the community and Cyanobacteria (22.1%) appeared and remained dominant after thirty months, when the microbiota consisted of Actinobacteria (42.2%) and Cyanobacteria (57.8%) only. Fungal diversity showed that the Ascomycota phylum was dominant before treatment (100%), while, after five months, Basidiomycota (6.38%) appeared on the stone, and vanished again after twelve months. Thirty months after the treatment, the fungal population started to stabilize and Ascomycota dominated on the stone (83.33%) once again. Members of green algae (Chlorophyta, Viridiplantae) appeared on the stone at 5, 12 and 30 months after the treatment and accounted for 4.25%, 84.77% and 16.77%, respectively.Conclusions: The results clearly show that, although a temporary shift in the bacterial and fungal diversity was observed during the first five months, most probably promoted by the application of the bio-consolidation treatment, the microbiota tends to regain its initial stability in a few months. Thus, the treatment does not seem to have any negative side effects on the stone-autochthonous microbiota over that time. The molecular strategy employed here is suggested as an efficient monitoring tool to assess the impact on the stone-autochthonous microbiota of the application of biomineralization processes as a restoration/conservation procedure.This work was supported by the European Regional Development Fund (ERDF), Junta de Andalucía (Spain) and the “Fortalecimiento de la I+D+i” program from the University of Granada, co-financed by grant RNM-3493 and Research Group BIO-103 from Junta de Andalucía, as well as by the Spanish Government through “José Castillejo” program from the “Ministerio de Educación, Cultura y Deporte” (I+D+i 2008-2011), and by the Austrian Science Fund (FWF) under Grant “Elise-Richter V194-B20”

    Phylogeny of rock-inhabiting fungi related to Dothideomycetes

    Get PDF
    The class Dothideomycetes (along with Eurotiomycetes) includes numerous rock-inhabiting fungi (RIF), a group of ascomycetes that tolerates surprisingly well harsh conditions prevailing on rock surfaces. Despite their convergent morphology and physiology, RIF are phylogenetically highly diverse in Dothideomycetes. However, the positions of main groups of RIF in this class remain unclear due to the lack of a strong phylogenetic framework. Moreover, connections between rock-dwelling habit and other lifestyles found in Dothideomycetes such as plant pathogens, saprobes and lichen-forming fungi are still unexplored. Based on multigene phylogenetic analyses, we report that RIF belong to Capnodiales (particularly to the family Teratosphaeriaceae s.l.), Dothideales, Pleosporales, and Myriangiales, as well as some uncharacterised groups with affinities to Dothideomycetes. Moreover, one lineage consisting exclusively of RIF proved to be closely related to Arthoniomycetes, the sister class of Dothideomycetes. The broad phylogenetic amplitude of RIF in Dothideomycetes suggests that total species richness in this class remains underestimated. Composition of some RIF-rich lineages suggests that rock surfaces are reservoirs for plant-associated fungi or saprobes, although other data also agree with rocks as a primary substrate for ancient fungal lineages. According to the current sampling, long distance dispersal seems to be common for RIF. Dothideomycetes lineages comprising lichens also include RIF, suggesting a possible link between rock-dwelling habit and lichenisation

    Bacteria (Eubacteria and Archea)

    No full text
    corecore